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Ambulance offload delays are a growing concern for health care providers in many countries. Offload
delays occur when ambulance paramedics arriving at a hospital Emergency Department (ED) cannot
transfer patient care to staff in the ED immediately. This is typically caused by overcrowding in the
ED. Using queueing theory, we model the interface between a regional Emergency Medical Services
(EMS) provider and multiple EDs that serve both ambulance and walk-in patients. We introduce Markov
chain models for the system and solve for the steady state probability distributions of queue lengths and
waiting times using matrix-analytic methods. We develop several algorithms for computing performance
measures for the system, particularly the offload delays for ambulance patients. Using these algorithms,
we analyze several three-hospital systems and assess the impact of system resources on offload delays. In

addition, simulation is used to validate model assumptions.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Ambulance offload time is the time taken to transfer a patient
from an ambulance stretcher into the Emergency Department
(ED) of a hospital. If an ED cannot accept care for an incoming
ambulance patient, a common course of action is to let paramedics
continue to provide patient care in the ambulance or on a stretcher
in the ED until an ED bed becomes available. This delay in transfer
of care is referred to as “offload delay”. Patients experiencing off-
load delays prevent the ambulances and their crews from return-
ing to service. According to a report by the Ontario Ministry of
Health and Long Term Care [5] (Canada), the principal cause of
ambulance offload delays is the congestion in downstream stages
of patient care. i.e., the lack of capacity to treat hospital inpatients.
Such a capacity shortage has a cascading impact - it contributes to
ED overcrowding, to ambulance offload delays, and ultimately to a
reduction in the EMS service level to the community.

Ambulance offload delays are a pressing health care concern in
many countries and, in particular, an issue of growing concern to
many communities in Canada. For example, the provincial govern-
ment of Ontario invested $96 million in its comprehensive action
plan to reduce the length of time paramedics wait to offload pa-
tients at hospital EDs in 2006. Despite such efforts, it was reported
that offload delays still cost Toronto EMS approximately 180
ambulance hours per day in December 2007 [17]. In the Region
of Waterloo (ROW), Ontario, a fleet of 18 ambulances and three
hospitals serve a population of approximately 500,000 who live
in three municipalities and four townships. According to the
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ROW EMS 2008 Master Plan [20], the region lost a maximum of
13.25 ambulance-days in a month in 2005, and 12.36 ambu-
lance-days in a month in 2006. In December of 2007, a maximum
of 22 offload delay incidents were reported in a single day.

Since offload delays increase both health care costs [21] and
risks to patients [28], how to reduce ambulance offload delays
has become an important issue to health care providers, and has
attracted the attention of researchers and practitioners. Most re-
search on offload delays is carried out by medical doctors who
try to shed light on the importance of the problem and its implica-
tions. For instance, Ting [28] investigates the causes of ambulance
offload delay and the impact of delayed ED care for patients. Taylor
et al. [27] conduct an observational study to determine the differ-
ence between documented ambulance arrival times and the actual
arrival times of patients from the ambulance into the emergency
department. Silvestri et al. [25] carry out an observational study
to examine the effect of ED bed availability on offload delays. Sil-
vestri et al. [26] conduct an observational study to evaluate offload
delay intervals and the association between out-of-hospital patient
triage categorization and admission. The study concludes that de-
layed ambulances reduce EMS availability. Eckstein and Chan [6]
investigate the effect of ED crowding on paramedic ambulance
availability. Their empirical study suggests a direct link between
ED crowding and the ability of EMS to provide a timely response
to emergency calls.

The aforementioned observational studies indicate that there is
a strong tie between offload delays and ED service capacity, in the
form of hospital beds, for patients. Thus, to understand and to re-
duce offload delays, it is necessary to investigate the relationship
analytically. A natural tool for such a study is queueing theory,
since ambulances and patients form queues in the EMS-ED system.
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In this paper, we introduce a queueing network that explicitly
models the arrival, transition, and service processes of patients in
an EMS-ED system. We use the queueing model to quantify offload
delays as well as the impact of service congestion on ambulance
waiting times in the EDs.

Queueing theory has been used extensively in the study of man-
ufacturing, telecommunications, and service systems. The use of
queueing theory in health care management has been growing in
the past two decades (see the surveys by Formundam and Herr-
mann [9] and Green [11]). For example, Kao and Tung [14] study
the problem of reallocating beds to services in order to minimize
the expected overflows for a large public health care delivery sys-
tem. They use a M/G/oo queueing model to approximate patient
population dynamics. Creemers et al. [3] develop a queueing model
to assign server time slots for different classes of patients. Gorune-
scu et al. [10] develop a loss queueing model to optimize the allo-
cation and use of hospital beds. While the above models use
classical queueing methods for analysis, we develop a Markov
chain model to analyze the interaction between an EMS provider
and multiple EDs in a region. On the other hand, most of the re-
search on EMS operations focuses on the location of emergency
units (e.g. Chaiken and Larson [1], Erkut et al. [7], and Erkut et al.
[8]), or on the relocation and dispatching decisions (e.g. Schmid
[23]).

In most ED settings, patients with life threatening injuries are
given priority over patients with less severe conditions [9]. Sid-
dhartan et al. [24] compare a First-Come-First-Serve (FCFS) admis-
sion discipline to a two class priority discipline for admitting
patients into an ED. They study the waiting times and queue
lengths for both classes of patients. Worthington [29] uses a three
priority level system to analyze patient transfer from an outpatient
physician to an inpatient physician. In our model, we assume that
patients that arrive by ambulance have higher acuity levels than
walk-in patients, and thus give the ambulance arrivals higher ser-
vice priority. Recently, Mandelbaum et al. [18] develop a queueing
model for the interface between an emergency department and
internal wards of a hospital. Their inverted-V model structure is
similar to our queueing model, except that Mandelbaum et al.
[18] model uses the priority class for inpatient admission purposes.

In this study, we are primarily interested in modeling the flows
of patients through a single EMS system into one of several emer-
gency departments. We are concerned only with intermediate and
acute care patients - those that consume ED beds - and we do not
capture the lowest acuity patients that we assume receive care in a
separate “minor treatment” area of the ED. We consider two types
of patients: those that arrive to an emergency department by
ambulance whom we refer to as ambulance patients, and those
who arrive directly to an emergency department by other means
whom we refer to as walk-in patients. Walk-in patients are as-
sumed to have a lower acuity level than that of ambulance pa-
tients, and thus are given lower priority than ambulance patients.

To capture these characteristics, we introduce a queueing net-
work with multiple servers and two priority classes of customers.
Specifically, we assume that: (1) patients arrive to the EMS and EDs
according to independent Poisson processes; (2) patient service
times follow an exponential distribution; (3) ambulance patients
have preemptive priority over walk-in patients; (4) the time taken
by the ambulance to transport and transfer the patient into the ED
is negligible compared to the time the patient spends in the ED.
Although assumptions (2) and (4) appear to limit our model, we la-
ter demonstrate through simulation that they do not have a signif-
icant impact on our conclusions or on the applicability of the
model.

In our model for the EMS-ED system, we introduce two Markov
chains for the queueing processes of ambulance patients and walk-
in patients. Offload delays are captured by the waiting times of

ambulance patients. By using matrix-analytic methods, we develop
several algorithms for computing system performance measures.
Our goal is to develop a tool that can help decision makers evaluate
the impact of resource allocation decisions at each hospital ED on
offload delays and on system wide hospital congestion.

The primary contributions of this paper are twofold. First, con-
tinuous time Markov chains are introduced for analyzing queue
lengths, waiting times, and sojourn times of ambulance and
walk-in patients in all EDs. Efficient algorithms are developed for
computing related performance measures such as the mean queue
length and mean waiting times. Our second contribution is to ap-
ply the theoretical model to examine the impact of reallocating re-
sources on system performance metrics.

The rest of the paper is organized as follows. In Section 2, we
introduce the queueing model of interest. We analyze the model
with ambulance patients only in Section 3. Then we investigate a
model with both ambulance patients and walk-in patients in Sec-
tion 4. For both models, we introduce a continuous time Markov
chain and then use matrix-analytic methods for analysis. In Sec-
tion 5, we numerically study several case studies with three emer-
gency departments. Finally, Section 6 contains the results of a
simulation study used to validate two of our modeling assumptions.

2. The stochastic model

We consider a queueing network with one EMS provider that
serves K hospitals, each with a multiple-bed ED. The EMS has N
ambulances. Fig. 1 illustrates a network consisting of three hospi-
tals. In general, the flow of patients can be described as follows:
high acuity patients call for an ambulance at a stationary Poisson
rate. When a call arrives and there is an ambulance available, the
patient is transported to one of the K EDs to receive service. These
are referred to as ambulance patients. Alternatively, a patient may
arrive to an ED for service by him/herself. We shall call these walk-
in patients. A patient that arrives to an ED is either admitted imme-
diately to a bed or joins a queue of patients waiting for service.
When a bed becomes available, it is assigned to a waiting ambu-
lance patient first, if any; otherwise, it is assigned to a waiting
walk-in patient. We assume service for walk-in patients is pre-
empted by an arriving ambulance patient if there are no beds avail-
able for the ambulance patient. All patients leave the ED
immediately once their service is completed.

2.1. Arrival of patients

We assume that ambulance patients arrive to the system accord-
ing to a Poisson process with rate 1o. Walk-in patients arrive to the
k™ ED according to a Poisson process with rate 4, for k=1,2,...,K.
All Poisson processes are independent of each other. The Poisson
assumption is supported by empirical studies (e.g., Channouf et al.
[2] and the references therein). Although arrival processes in prac-
tice, depend on the time of the day, day of the week, and other fac-
tors, the use of a (stationary) Poisson process to approximate a
non-stationary Poisson process has been justified in the literature
(e.g., Lewis [16] and Kao and Tung [14], among others).

2.2. Ambulance routing

When a patient calls for an ambulance, if an ambulance is avail-
able, the patient is picked up and transported to the k* ED with
probability py. We call {p, k=1,2,...,K} the routing probabilities.
By the law of total probability, we have p; +p,+... +pr=1. If all
N ambulances are occupied when a call occurs, we assume that
the patient is lost. In practice, this is a rare occurrence, and the call
will actually be served by a neighboring EMS provider.
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Fig. 1. EMS-ED queueing network diagram for K = 3.

Ambulance transit times include the time to reach a patient, to
load the patient into an ambulance, and then to transfer the patient
into an ED. In practice, the transit time is not zero, but it is short in
comparison to the time that a patient spends in an ED. More
importantly, offload delays, which are the focus of this work,
mainly depend on the congestion within the emergency depart-
ments. We have therefore assumed that the transit time is zero.
This simplification permits us to obtain many insights without
overly complicating our model. In Section 6, through simulation,
we demonstrate numerically that adding the EMS transit time into
the model has little impact on offload delays and other perfor-
mance measures of interest. In practice, the hospital to which the
patient is taken may depend on their type of medical problem, or
on which hospital is the closest in proximity. In our model, we
do not take such details into consideration. Instead, we assume
that the routing probabilities reflect the long term fraction of all
patients sent to individual EDs.

2.3. Service capacity and service time at an ED

Each ED serves both ambulance and walk-in patients. We as-
sume that the k™ ED has a service capacity of ¢, units (or beds).
That is: the k" ED can serve c, patients simultaneously. At the k™
ED, the service time of a patient, regardless of its type, is assumed
to have an exponential distribution with parameter u,. We can
view each server as a bed or the combination of resources (e.g. a
bed, nurses, doctors, etc.) needed to serve a patient. Each unit of
capacity operates independently of others. In Section 6, we exam-
ine the impact of the exponential assumption on system
performance.

2.4. Service priority at an ED

We assume that ambulance patients have preemptive priority
over walk-in patients. That is: if a bed becomes available, it will
be assigned to an ambulance patient first. If an ambulance patient
arrives at an ED and finds that all servers (beds) are occupied, then
if there is one or more walk-in patient in service, the patient or one
of the patients will be preempted by the arriving ambulance pa-
tient. When a bed becomes available in the future, and there are
no ambulance patients waiting, the walk-in patient will return to
service. Since the service times are assumed to be exponential,
waiting times for walk-in patients are not affected by repeated/re-
sumed services. We also assume that, within each priority class,
patients are served on a first-come-first-served basis.

In practice, patients that arrive via ambulance typically have
higher acuity levels than walk-in patients. Fig. 2, constructed with
data from a local hospital in the Region of Waterloo, Ontario, Can-
ada, shows that this assumption is reasonable. In Fig. 2, CTAS 1
(Canadian Triage Acuity Scale) represents patients with the most
severe conditions who require immediate attention. CTAS 2, 3,
and 4 patients have successively lower acuity medical problems.
For this reason, we assume that ambulance patients have preemp-
tive priority over walk-in patients. Preempting the service of a
walk-in patient can be interpreted as preempting their care, as is
the case when a severely ill patient arrives to the ED.

We summarize the model parameters as follows:

e N: total number of ambulances available in the system;
e K: number of regional hospitals (or EDs);
e Jo: ambulance patient arrival rate to the EMS system;
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Fig. 2. Arrivals to an ED by acuity level and mode of arrival.

e pi: probability that an ambulance patient is sent to the k™ ED,
fork=1,2,...,K;

e L service rate per server in the k™ ED, for k=1,2,...,K;

e Ji: arrival rate of walk-in patients at the k™ED, fork=1,2,...,K;

e ¢,: number of servers in the k™ ED, which corresponds to the
service capacity at the k™ ED, for k=1,2,...,K

In order to analyze the queueing network, we introduce two
sets of state variables to describe the system state:

(1) gqx(t): total number of ambulance patients in service or
waiting in the k" ED, at time ¢, for k=1,2,..., K;

(2) qwx(t): total number of walk-in patients in service or waiting
in the k" ED, at time t, for k=1,2,..., K.

The fact that the service discipline at each hospital ED
is assumed to be preemptive, where walk-in patients have
lower priority and ambulance arrivals are assigned higher
priority, allows us to analyze the queues of ambulance patients
separately without the need to include walk-in patients. Thus,
we first analyze the queues of ambulance patients only in
Section 3. Then we analyze the queues for both types of patients
in Section 4.

3. Ambulance patients

In this section, we analyze the stochastic model with only
ambulance patients. The analysis consists of four parts. Sec-
tion 3.1: a recursive method is introduced for constructing the
infinitesimal generator for a continuous time Markov chain. Sec-
tion 3.2: Matrix-analytic methods are used to develop an algo-
rithm for computing the stationary distribution of the number
of patients in the system. Section 3.3: a number of performance
measures are derived. Section 3.4: a Markov chain is constructed
for the waiting times of ambulance patients and the mean wait-
ing times are obtained.

3.1. The Markov chain

Since the arrival process of ambulance patients to the EMS is
Poisson and the service times are exponential, it is easy to see that
the stochastic process {(qqx(t), qax_1(t), ... .qa1(t)),t > 0} is a con-
tinuous time Markov chain. The queue lengths, qq k(t), qax_1(t), - - -
and qqq(t), are finite, since qqi(t)+ Gax—1(t)+...+qqa(t) <
N+ci+cyt...+ck Thus, the state space Q of {(qax(t), Gax-1
(t), ...,qq1(t)),t = 0} is finite. In order to construct the infinitesimal
generator of the Markov chain, we divide the states into subgroups
according to the values of g, x(t): Q = Qo UQy U... U Qy,q,, Where,
for iK= 0,], C ,N+ Ck,

:{(IK,iK Towvns iz i])'0<ij\Cj+miﬂ{NC'(+N lK}]<] K-1,
0 <ij, +1ij, <, +¢, +min{N,ck + N —ix},1 <jy,jo <K -1,
i] +l’2+..‘+l'1(,] <G +Cz+‘..+CK,1+min{N,c,<+N—i,<}}‘
(M
We shall call gqi(t) the level variable and (qqx_1(t), - .. ,gq1(t))

the (vector) phase variable. The set of states in level ix is Q.

We observe that each of the state variables q, «(t), gax_1(t), ...,
and qg1(t) changes its value by at most one whenever an arrival or
a service completion occurs. Then, {(qax(t), qax_1(t), ....qa1(t)),
t > 0} is a level dependent quasi-birth-and-death (QBD) process
with a finite number of levels. See Neuts [19] and Latouche and
Ramaswami [15] for more details on QBD processes.

Due to the birth-and-death nature of the level variable g, (t),
the infinitesimal generator for the Markov chain {(qq(t), qax_1(t),

.. ,4a1(t)), t = 0} has the following structure:
(K) (K)
A(OVOJ A(O»l)
(K) (K) K)
A(1.0) A(l,l) A(l 2)
K
Qi _
(K> (K) (K)
AN+CK 1,N+cx—2) A(N«H‘,(*IN%»C,(*]) A(N+c,<—1.N+c,<)
A(K A®
(N+cg .N+cg—1) (N-+c N+ci )

(2)

Intuitively, the matrices A'X i +1 A(” 1)» and A i) ) give the transition
rates by which the number of patients at the Kf ED, i.e., qqit), in-
creases by one, decreases by one, or does not change, respectively.
Finding the matrix blocks in Q{{’ is not straightforward. The main dif-
ficulty comes from the fact that the number of states in different levels
varies. We observe that the number of states in each level is deter-
mined by the number of available ambulances to other EDs. Based
on this observation, a recursive method is introduced for constructing
the matrix blocks in the infinitesimal generator Q. The computa-
tional steps are summarized in Algorithm 4 in Appendix A.

3.2. Matrix-geometric solution

We denote by © = (7o, 1, . .., In. ¢, ) the stationary distribution
of the Markov chain {(qqx(t), Qax_1(t), - - - ,qa1(t)), t = 0}, where the
elements of the row vector 7;, are the steady state probabilities of
the states in Q;, for 0 < ix < ¢+ N. Since the Markov chain is irre-
ducible, 7 exists and is the unique non-negative solution of the lin-
ear system:

Q¥ =0 and e = 1, 3)

where e is a column vector of ones. Since the infinitesimal generator
“) has a block tridiagonal structure, a matrix-geometric solution
can be obtained. First, for the levels N + c¢x and N + ¢ — 1, we obtain

TNt = ToN+cx—1RaN+es (4)
where
-1
(K) (K)
RU‘N*’CK = AN+c,< 1,N+c) (A(N+CK,N+CK)> : (5)

For levelsi=1,2,...,N+cx — 1, we have:

i = 1'E,>1Ra.i (6)
where

-1
Rai= A% (A5 + Raodl) 7

In order to find 7, we need to find 7, for level zero. The bound-
ary balance equations and the normalization condition lead to the
following linear system for finding mo:
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o (Al + RurAly) = 0:
To(@ +Re1€ +RyiRo2e+ ... +Re1 ... Ronie ) = 1.

(8)

We summarize the solution steps in Algorithm 1.

Algorithm 1. Stationary distribution of {(qui(t), Gax_1(t), ...,
daa(1)), t > 0}

1. Use Algorithm 4 in Appendix A to generate matrix blocks
in Q.

2. Find Ryn.¢, using Eq. (5).

. Find R,; recursively using Eq. (7), for 1 <i < N+c¢x— 1.

4. Find the vector 7y using the boundary and normalization
conditions in (8).

5. Find &; using Eq. (6).

w

3.3. Performance measures

A number of performance measures can be derived directly
from m. We shall focus on the performance measures for the K™
ED. Performance measures for other EDs can be obtained from =
as well, but the formulas are more involved.

1. In steady state, the distribution of the number of ambulance
patients qq in the K™ ED is given by

P{q. =i} = n'(i) = me, fori=0,1,... . N+cx. 9)

2. The mean number of ambulance patients in the K ED is given by

N+ck

Elqor) = >_in" (). (10)
i=0

3. We define random variable 0 as the number of ambulances in
offload delay at the K™ ED. Since there are ambulances in offload
delay at the K™ ED if and only if gqx>cx, we have 0% =
max{0,g,x — cx}. The probability distribution for the number
of ambulances in offload delay can be calculated as follows:

K
> m(i), form=0;
parg

P{OM — m} — (1)

n®(m+ck), form=1,2,...,N.

The mean number of ambulances in offload delay in the K ED,
E[0%™)], can be obtained accordingly.

4. For state (i, ... ,i1), we denote by ;.
bility, which is an element in the vector n. The probability dis-
tribution of the total number of ambulances in offload delay,
denoted by O, is given by

P{O=m} = Z T,y »
(i) 3% Max{0lig—c)=m
for 0 < m < N; (12)

The mean total number of ambulances in offload delay, E[O], can
be obtained accordingly.

5. We refer to the probability that all ambulances are in offload
delay as the loss probability, denoted as P;. Then the loss prob-
ability is given by

P, =P{O=N}= > Ty (13)

3.4. Waiting times of ambulance patients (offload delays)

The waiting time w,x of an ambulance patient arriving to the
K™ ED depends on the number of ambulance patients waiting at
the K™ ED. Denote by #;(K) the probability that i ambulance pa-
tients are in the K ED when an ambulance patient arrives in the
K™ ED. Since an arriving patient can reach the K ED if and only
if there is an ambulance available at the time of arrival, we have,
forO<i<cg+N-1,

1
n(K) = 1-p, Z Tiig iy *

(iK1 y-enri1 ) EQ: max{O,i—cK}+Z:;: max{0,i—cy }<N
(14)

Let a(K) = (1., (K), ..., M, .n_1 (K)). Note that #(K) is the proba-
bility that an arriving ambulance patient to the K™ ED has to wait
for the service completion of i — cx+ 1 patients before getting a
bed, for i > ck. In the K" ED, there are ¢k beds for all patients, each
with an exponential service time with parameter p. If all beds are
occupied, the time until the next service completion is exponen-
tially distributed with parameter cyuy. Thus, if all ¢k servers are
busy, the total time to serve i patients has an Erlang distribution
of order i and rate cxu. Consequently, when an ambulance patient
arrives to hospital K, the waiting time w,x has a generalized
Erlang distribution with a phase-type representation (a(K),ciktti/n),
where

In= o . (15)

1 _] NxN
The distribution function of the waiting time w, is given by
P{wax <t} =1 —a(K) exp{—cx i Jntte. (16)

By routine calculations, we obtain

N ing, 1K)
Ewax] = _toetHy 17
Wak] ; Oty (17)

The mean waiting time E[w,k] and the mean queue length
Elqasl satisfy Little's law: Elqax] = io(1 — POPK(E[Wau] + /1),
where Jo(1 — P;)px is the arrival rate to the K" ED. We use Little’s
law to verify the accuracy of computations.

Denote by w, the waiting time of an arbitrary ambulance pa-
tient who enters the system (i.e., the patient is not lost). Since
arriving ambulance patients are sent to individual hospitals with
probabilities {pq, ...,px}, the mean waiting time of an arbitrary
ambulance patient who actually enters a hospital is given by
Ewa) = 3K, pEWay]. Since the service time in the k™" ED has an
exponential distribution with parameter t, the mean sojourn time
of an ambulance patient at the k™ ED is given by E[wq] + 1/
The mean sojourn time of an arbitrary ambulance patient who
enters the system can be calculated by ™K pi(EWai] +1/1,) =

E[wa] + 31 Pe/ My
4. Walk-in patients

To account for the walk-in patients who arrive to the hospital
EDs with lower acuity ailments, we utilize the Markov chain de-
fined in Section 3 to develop a new Markov chain that includes
both ambulance and walk-in patients. Due to the facts that the
arrival processes of walk-in patients to individual hospitals are
independent and the service priority is preemptive, without loss
of generality, we can focus on the walk-in patient queue in one
ED.
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4.1. A modified Markov chain

We add q(t) to the Markov chain considered in Section 3 to
obtain a continuous time Markov chain {(qw(t), Gai(t), qax_1(t),
..,qq1()), t = 0}, which has an infinite state space. Since the level
variable gy, i(t) changes its value by at most one at each transition,
the process {(qu(t), (Gax(thdak 1(£). .- .dar(D)), t > 0} is a QBD
process with an infinite number of levels. Every level, which con-
sists of all states with fixed g, (t), has the same number of states
as that in Q (defined in Section 3.1). Since the service discipline is
preemptive, walk-in patients have no impact on the service of
ambulance patients. Thus, the infinitesimal generator Q,x has
the following structure:

0 Al
Mg —Mga Akl

Qui =1 (QW — i) + R - .
K (" - 4d) Mio, ~Miee  xl

Mo, —Mie, 7xl

(18)

where | ® g }f) — JklI) is the Kronecker product of I (which is infi-
nite in size) and Q" — il, Q' is defined in Eq. (2), and M, is a
diagonal matrix that includes service rates for walk-in patients con-
ditioning on the number of ambulance patients in the K™ ED: for
n=12,...,¢cx

0 min{n, cx } iyl
1 min{n,cx — 1}l

My = ¢k —1 il )
Ck 0

cx+N 0
(19)
Note that, an interpretation of n in My, is n=min{ck, qw(t)},
i.e., the number of walk-in patients that could be in service. The
diagonal elements of M, indicate the number of walk-in patients
in service, which depends on the number of available beds and the
number of walk-in patients in the K ED, and is given by max{0,
min{n, cx — qq, k(£)}}. It is easy to see that the Markov chain {(q,x
(), Qax(t), Gax-1(t), ... ,ga1(t)),t = 0} is level dependent up to level
cx. Beyond level ¢y, the Markov chain has a level independent
structure. This allows us to find its stationary probability distribu-
tion using matrix-analytic methods.

4.2. Mean queue length for walk-in patients

Let ¢ = (oo, ¢1,...) be the stationary probability distribution of
{(qwi(t), (qai(t), Gax-1(E), ... gaa(t))),t = 0}. The stationary distri-
bution exists if and only if the Markov chain is ergodic. Since the
Markov chain of interest is irreducible and has a QBD structure,
by Neuts [19], the Markov chain is ergodic if and only if
/xme < My e, which can be simplified to

Ak +pl(;0(] — P]_) < CxUg- (20)

Intuitively, the left hand side of Eq. (20) is the total arrival rate to
the K™ ED and the right hand side is the potential service capacity
at the K" ED. Eq. (20) ensures that there is enough capacity to serve
all patients arriving to the K™ ED. In the rest of this paper, we as-
sume that Eq. (20) holds. The stationary probability distribution ¢
can thus be obtained by solving the linear system

¢Q,,x =0 and ¢e = 1. (21)

By Neuts [19], the stationary distribution has a matrix geomet-
ric form:

¢y = ¢ Ry, ¥, forn > ¢k (22)

where the rate matrix R,, is the minimal nonnegative solution to the
nonlinear equation:

2l + R (QU = el = Mgy ) + Ry Mice, = 0. (23)

The above equation can be solved using the logarithmic reduction
algorithm of [15]. For the level dependent part of the Markov chain
(i.e., levels 0, 1, ..., c), the probabilities can be obtained by solving a
finite level QBD process. Details for computing ¢ are given in Algo-
rithm 2.

Algorithm 2. Computation of stationary distribution for {(qw,(t),
((qaidt) qax-1(t) ... ga1(t))), t = 0}

1. Check stability of the Markov chain using the condition
(20). If the system is stable, continue with step 2; Other-
wise the stationary probability distribution does not exist.

. Find R,, by solving Eq. (23).

. Set Ry, = Ru.

4. Find Ry, for 1 < n < ¢k recursively starting from n=cx — 1

using the equation: Ry, = —J (Qf\f) — Il — Myn + Rynin

w N

Mini1) ™'
5. Find the vector ¢ using the boundary and normalizing
conditions: ¢, QY — Akl + Rw.lMK‘]) =0, oI +Rwi+

Rw.l RW,Z +...+ Rw,lRw,Z cee RW,CK,l + Rw.l Rw.2 .. -Rw,cK (1 - Rw)_1)
e=1.

6. For 1 <n< ¢y find ¢, starting from n=1 up to n=ck using
equation: ¢, = ¢n_1Rw

7. For n > ¢, find ¢, using Eq. (22).

By routine calculations, the mean queue length of walk-in pa-
tients in the K™ ED can be obtained as

Elqui = Yy nue + b, (Ru(l—Ry) >+l —Ry) e (24)

4.3. Sojourn times for walk-in patients

We now construct a continuous time Markov chain for analyz-
ing the sojourn time of a walk-in patient. Since a walk-in patient
may get a bed and then lose it a number of times prior to leaving
the hospital, we focus on the sojourn time, w,, x, the total time that
a walk-in patient spends in the K ED.

To find the distribution of the sojourn time, we construct an
absorbing Markov chain for the sojourn time of a tagged walk-in
patient. To do so, we only need to consider those walk-in patients
who arrived before the tagged walk-in patient. That is: there is no
arrival of walk-in patients in the absorbing Markov chain for the
sojourn time. The Markov chain is terminated when the tagged
walk-in patient completes its service. If the tagged walk-in patient
occupies a bed, the service is completed at the rate uy. The tagged
walk-in patient may be pushed out of a bed a number of times by
ambulance patients before the completion of service. Again, we re-
call that the service to ambulance patients is not affected by that of
walk-in patients. We define, for 0 <n <cx—1,

K
Qy’ — Mg
K
Mg QN — Mg

MI(.n Q%Q - MI(.n+1

and, for n > cg,
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0 Q;\fj — Mk

1 Mg QyY — M.

Tow = . R R
A K)
Ck MK.CK Q;\/ - MK.CK

n MK.CK Q;VK] - MK.CK
(26)

Given that there are n walk-in patients already in the K ED
when a tagged walk-in patient arrives, the tagged patient’s sojourn
time has a phase-type distribution with matrix representation
((0,...,0,¢n/(¢ne),Tyw). Note that, if the level within T,,, is cx — 1
or less, the tagged patient may be in service, depending on the
number of ambulance patients in the K ED, and may complete
its service earlier than other patients in service. Then we obtain
the conditional probability distribution of the sojourn time as:

P{wwik < tn}=1-1(0,...,0,¢,/(¢,€)) exp{Trwt}e. (27)

The distribution of the sojourn time of an arbitrary walk-in pa-
tient can be obtained as

o0

P{wyx <t} =1- Z(O, ...,0,¢,) exp{Tyut}e. (28)

n=0

By using truncation, the above formula can be used to compute
the distribution of the sojourn time. Furthermore, the following ex-
plicit formula can be obtained for the mean sojourn time, where
the computation can be done in a finite number of steps, as long
as the matrix R,, can be obtained. Define

D= Q¥ - MKACK)AMK,CK, and A = - () - MK‘CK)J. (29)
For 0 < n < cx — 1, define
B = —(Q Myt ) '+ (@~ Mynr) M Q) M)
Fot D) (Q M) M (QF M)
M (@ M) (30)

By routine calculations, the conditional mean sojourn time can
be found as, forO<n<cxk—1,

EWuwk|n] = —(0,...0,¢,/(¢€))T, € = %Bne, 31)

and, for n > cg,

E[Wy|n] = q‘fe (A + DA + DA + ..+ Dy “Ac + D 'Bo 1 Je. (32)
n

Note that Dk is an irreducible stochastic matrix. Then there ex-
ists a unique stochastic vector 6p, satisfying 6p Dx = 0p, and
Op.e = 1.1t can be shown that I — Dk + efp, is invertible. By routine
calculations, Eq. (32) can be reduced to

E[Wauk|n] = % ((1- Do) 1 — Dy + et ) A
n

+(n = ¢k + 1)e0p, Ax + DZ‘CK”Bck,l)e. (33)

For an arbitrary walk-in patient at the K™ ED, we obtain:

cx—1

Ewwk] = ¢n€E[Ww k[N + g, (I — R) ' (I - Dx
n=0
+e0p,) 'Ace + ¢ (I — Ry) *ebp Ace

+ e, (ZR@D,’}) Dy (BCK,1 —(I-Dg+ eoDK)”AK)e.

n=0

(34)

The infinite summation in Eq. (34) can be transformed into the fol-
lowing form by using the direct-sum f{-):

f (ZR'JVD?<> => f(R, ®D)" =f()(I - R, ®Dx) . (35)

n=0 n=0

We note that (1) the direct-sum f{X) of matrix X is a row vector
and is obtained by concatenating the rows of X starting from the
first row and; (2) R, ® Dk is the Kronecker product of matrices
R, and Dy. Consequently, computing E[w,,x] involves only finite
summations and can be done without truncation. The procedure
to compute E[w,, k| is summarized in Algorithm 3.

Algorithm 3. Computation of E[w,, ]

1. Find R,, by solving Eq. (23).

2. Compute Dy and Ag by Eq. (29).

3. Use Eq. (35) to find f(>"" 4R, Dy) and > Ry, D.
4. Use Eq. (34) to find E[wy,k]-

Similar to the mean queue length and mean waiting time for
ambulance patients, Little’s law applies to the mean queue length
E[qwx] and mean sojourn time E[w,,, ], i.e., E[qw k] = AkE[Wy, k). Thus,
computing one gives the other. Little’s law can be used for an accu-
racy check if both are computed separately. Since all computations
in this section, as well as in Section 3, involve large matrices, it is
important to compute both E[qwx] and E[w,] and use Little’s
law to check the accuracy of the computations.

Remark 1. We note that the waiting time of a tagged walk-in
patient (i.e., the time from the arrival of the patient until the first
time that the patient gets a bed) can be studied similarly. Absorbing
Markov chains can be constructed in the same way, except that only
states without a bed available to the tagged patients are kept. The
details are omitted here. Kao and Narayanan [13] consider a
multiprocessor single node queue and two types of jobs with one
having preemptive priority over the other. To find the waiting time
distribution for the low priority jobs, they find the distributions of
two random variables: the time spent waiting in the queue until
reaching a server, and the time elapsed between the epoch when the
job reaches the server for the first time and the epoch it departs the
system. Our approach described above is direct and more efficient.

5. Case studies

In this section, we use the methods developed in Sections 3 and
4 to analyze three cases that have been developed to reflect a
scaled down version of a real EMS-ED system from southwestern
Ontario, Canada.

5.1. Parameter selection

As noted above, parameters for the three case studies are
guided by scaling down a real EMS-ED system to reflect the capac-
ity of its single EMS provider and the acute and intermediate pa-
tient care areas of the three regional hospitals served by the
EMS. The case studies are developed with the following features:

(1) Case study 1 represents a small network (i.e., small numbers
of ambulances and beds) that experiences infrequent offload
delays.

(2) Case study 2 represents a somewhat larger EMS-ED network
with greater arrival rates, in which significant offload delays
are experienced. For this case study, we also investigate the
effect of ambulance routing probabilities on total offload
delays experienced by the EMS.
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(3) Case study 3 represents parameter values closest to the real
EMS-ED system this work is based on. For this case study, we
investigate the effect of service rates on offload delays.

More specifically, individual system parameters for the three
case studies are selected as follows.

5.1.1. Number of ED servers

The number of ED servers was chosen to reflect a scaled down
version of the actual number of beds in the real EMS-ED system.
The reason we used a smaller number of servers than the number
of actual beds is that service to patients is constrained by resources
such as nurses and doctors, and also the fact that ED beds are rou-
tinely occupied by patients that have been admitted to the hospital
and they are waiting for an inpatient bed.

5.1.2. Patient arrival rates

Real ED utilization rates and known proportions of walk-in pa-
tients vs ambulance arrivals were used to select the arrival rates
for ambulance and walk-in patients. We then varied the ambu-
lance patient arrival rates to generate different EMS workloads.

5.1.3. Routing probabilities

Actual data on routing probabilities were used to select the val-
ues of {p1, p2, p3} for the three EDs. We note that one of the EDs re-
ceives up to 45% of the ambulance arrivals and had a
disproportionate overall arrival rate of patients, as compared to
its overall capacity.

5.1.4. Service rates at EDs

The service rate for each ED, p, was selected based on real
Length of Stay (LOS) data. The LOS is approximately 6 hour, which
is equivalent to p =1/6. For case study 3, we varied ED service
rates to observe its impact on ED performance measures.

To compare ED performance in each case study, we define two
types of server utilization for the k™ ED, for 1 < k < K:

e ED utilization for ambulance patients p,.: since the service of
ambulance patients is not affected by walk-in patients, we can
define the server utilization for ambulance patients. Define
Pax=min{1,20pi(1 — Pr)/(critr)}, where 2gpi(1 — Pp) is the arrival
rate of ambulance patients to the k" ED, and Cklik is the total
service capacity at the k™ ED.

e ED total utilization py: considering both types of patients, server
utilization can be defined as p,=min{1, (lopi(1 — Pp)+ A)/
(Crepti)}-

5.2. Case study 1

The system parameters used in this case are recorded in Table 1.
The results are reported in Table 2.

Results in Table 2 show the dramatic difference between wait-
ing times for ambulance and walk-in patients. For ambulance pa-
tients, the mean waiting times (offload delays) are almost zero.
For walk-in patients, the mean sojourn times are more than
11 hour in all three EDs. Ambulance patients consume slightly less
than 30% of the ED capacity, but since they get priority over walk-
in patients, they have much shorter waiting times. The overall ED
utilization is close to 90%, which, together with the priority service
discipline, causes much longer waiting times for the lower priority
walk-in patients. The results show clearly the effect of the priority
service discipline on the waiting times of all patients and the off-
load delays of ambulances.

This case study shows that the priority based admitting policy
has a great impact on patient waiting times. Assigning a higher
priority to ambulance patients ensures short waiting times and

Table 1
System parameters for case study 1.
Parameter set Value
N 6
(%0) patients/hour 1.5
(21, 42, /3) patient/hour (1.7,1.4, 0.8)
(p1,142,143) patient/hour (1/6,1/6, 1/6)
(€1,€2,€3) (15,12, 8)
(P1.p2.p3) (0.45, 0.29, 0.26)
(Pa1.Pa2:Pa3) (27%, 22%, 29%)
(p1, P2, p3) (95%, 91.75%, 89.25%)
Table 2

Performance measures for case study 1.

Measures Matrix analytic results

k=1 k=2 k=3
E[qax] 4.05 2.61 234
E[0%)] 8.7 x 10°° 54x10°° 13x1073
E[way] 129 x 1076 125 x 1076 32x1073
E[qw.] 24.10 16.06 10.44
E[Wy] 14.17 11.47 13.06
P 135x10°°

minimal offload delays at the cost of long waiting times for
walk-in patients.

5.3. Case study 2

In this case study, a slightly smaller ED capacity is used, and we
study the impact of varying the routing probabilities {p4, ... ,px} on
system performance. We consider two scenarios. The first scenario
reflects the unbalanced routing probabilities present in the real
system studied. The imbalance is a result of heuristic routing pol-
icies used by the emergency control center staff, as well as the
need to send patients with certain illnesses to a specific hospital
because of the services it provides. We have not captured this in
our model except through an imbalance in the routing probabili-
ties to each ED. The second scenario corresponds to a system in
which the routing probabilities are proportional to ED capacity.
Specifically, we set py = cppt/(C11t1 + Coptp + c3u3) for k=1, 2, 3. The
same patient arrival rates are used for both scenarios, as shown
in Table 3. They were chosen to accentuate the impact of the
imbalanced routing probabilities on offload delays.

The results, recorded in Table 4 for both scenarios, show how bal-
ancing the ED utilization for ambulance patients {0g,1,04.2,043}, has
balanced the number of ambulances in offload delays at the EDs.
More interestingly, the expected total number of ambulances in off-
load delay (i.e., 35 ,E[0%]) is decreased from 3.42 (=1.68 +0.16 +
1.58) in the current scenario to 2.92 (=0.83 +0.93 + 1.16) ambu-
lances in the balanced scenario, which corresponds to a 14% de-
crease in the number of ambulances in offload delays. The total
expected offload delay (i.e., Zizl DiE[wayi]) is decreased from
0.54 hour to 0.45 hours in the balanced scenario. This corresponds
to a 9.9% decrease in the total hours of offload delays experienced
in the region. The loss probability P; is decreased from 6.93% in the
current scenario to 4.98% in the balanced scenario. These loss prob-
abilities are higher than what is experienced in the real system; our
interest was in demonstrating the impact of routing decisions on off-
load delays.

From the EMS perspective, decision makers are interested in find-
ing routing probabilities for which the total number of ambulances
in offload delay is minimized. Fig. 3 presents the distributions of
ambulances in offload delay under both the initial (unbalanced)
and balanced routing scenarios. Under the unbalanced scenario,
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Table 3 Table 5
System parameters for case study 2. System parameters for case study 3.
Parameter set Value Parameter set Value
N 9 N 16
(40) Patient/hour 7 (40) Patient/hour 7
(21, 42, 43) Patient/hour (0.3, 0.6, 0.23) (21,%2,43) Patient/hour (0.75, 0.9, 0.5)
(u1, t2, ps3) Patient/hour (1/6, 1/6, 1/6) (cy, €2, €3) (24, 21, 16)
(¢1, €2, €3) (20,17, 12) (p1, P2, P3) (0.45, 0.29, 0.26)

the probability of zero ambulances in offload delay is 29%, while un-
der the balanced scenario this probability is 35%. This represents a
significant increase in the availability of ambulances, and will result
in better coverage and lower operating costs for the EMS provider.

While the benefit to ambulance patients is clear, the impact of
balancing the routing probabilities had a negative effect on the
waiting times for walk-in patients in the second ED. As shown in
Table 4, the total utilization of the second ED is 100% for the bal-
anced scenario. Then the queue of walk-in patients can be very
long. Consequently, the routing mechanism has to be adjusted
for implementation in practice. Nevertheless, the results indicate
a possible direction for reducing offload delays of ambulance pa-
tients, without increasing service capacity.

5.4. Case study 3

In this case study, we increase the number of ambulances to 16.
We set the number of servers at each ED to be roughly 60% of the
number of beds available within the real system being studied to re-
flect a realistic throughput rate for patients when they have a mean
LOS of 6 hours. To study the impact of changing patient LOS, we vary
the mean service time from (1/6, 1/6, 1/6) to (1/5, 1/5, 1/5). Increas-
ing the service rate or increasing the number of servers have similar
effects on the performance measures because both variations corre-
spond to increasing the service capacity (i.e., cxt) at the EDs. The
system input parameters for this case study are reported in Table 5.

The results recorded in Table 6 indicate that for the current sit-
uation, EMS provides enough ambulances and the three hospitals
provide ample capacity to serve ambulance patients. The waiting
times (offload delays) for ambulance patients are short, but the
queue lengths and waiting times of walk-in patients are significant.
This corresponds fairly well to the real system we studied.

We also record the results when the service rate of each of the
three EDs is increased from 1/6 to 1/5 in Table 6. As expected, total
offload delays, walk-in patient sojourn times and expected queue
lengths decrease as the service capacity increases. Compared to
that of ambulance patients, the sojourn time for walk-in patients
decreases more drastically. Further, we observe that the benefit
of adding capacity is greater for EDs with higher utilization. As
shown in Table 6, the improvement in the first ED performance
is the highest and the change in the second ED is the lowest. This
is also expected given the relationship between waiting times
and system utilization.

This case study shows how our model can be used to assess the
effect of adding more capacity to the system. It also shows where
to add resources in order to improve the system performance the
most.

Remark 2. Using formula (45) in Appendix A, the sizes of the
matrix blocks (e.g., Q%O,MK,CK.,RW) are 5276 for case 1, 14835 for
case 2, and 39174 for case 3. It is clear that the space complexity
for computing the matrix-geometric solution increases quickly as

Table 4
Performance measures for case study 2.
Performance measure Current Balanced
k=1 k=2 k=3 k=1 k=2 k=3
Dk 45% 29% 26% 40.82% 34.69% 24.49%
Pak 87.95% 66.68% 84.69% 81.45% 81.44% 81.45%
Ok 96.95% 87.86% 96.19% 90.45% 100% 92.95%
Elqq, k] 19.27 11.50 11.74 17.12 14.78 10.93
E[0%)] 1.68 0.16 1.58 0.83 0.93 1.16
E[wg, ] 0.60 0.09 0.93 0.32 043 0.71
Elqw, «] 18.12 7.46 15.34 533 - 7.75
E[wy, «] 60.40 12.43 66.70 17.77 - 33.70
Py 6.93% 4.98%
0.35
0.3
0.25
£
9 0.2
o
0.15
0.1
0.05
0
0o 1 2 3 4 5 6 7 8 9

Scenario 1

Scenario 2

Fig. 3. The distribution for the total number of ambulances in offload delay.
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Table 6
Performance measures for case study 3.
Performance measure Current Increased capacity
k=1 k=2 k=3 k=1 k=2 k=3
e 1/6 1/6 1/6 1/5 1/5 1/5
Pak 78.75% 58.00% 68.25% 65.63% 48.33% 56.88%
Pk 97.50% 83.71% 87.00% 81.25% 69.76% 72.50%
E[qqy] 19.52 12.19 11.14 15.82 10.15 9.14
E[0%)] 0.64 0.02 0.23 0.07 0.00 0.04
E[wgy] 0.20 0.01 0.13 0.02 932 x10°° 0.04
E[qw, ] 20.85 7.10 5.98 474 4.69 2.90
E[wu, ] 27.80 7.89 11.95 6.32 5.21 5.79
Py 9.01 x 1074 1.6 x107°

the numbers of ambulances and ED beds grow. Further exploring
the tridiagonal structure in those matrix blocks may make the
algorithms more efficient.

6. Model validation

The queueing network model developed in this paper is based
on two main assumptions: transit times of ambulances are negligi-
ble, and service times at EDs are exponentially distributed. These
assumptions have been made to gain insights into system perfor-
mance without making the models highly complex. In this section
we created a simulation model to show that relaxing these
assumptions does not have a large impact on the nature of our re-
sults. We show that transit times have a negligible effect on offload
delays as they occur at an upstream stage of the network. We are
also able to show that the performance measure results for ambu-
lance patients are less sensitive to the service time distribution
than for walk-in patients. In other words, offload delays are not sig-
nificantly affected by the service time distribution assumed.

We use the three case studies in Section 5 as the base models for
model validation. We add transit time to the queueing network or

Table 7

change the service time distribution from exponential to more gen-
eral distributions. The validation models are then analyzed through
simulation. Performance measures are collected for the original
models and for the validation models. Then we compare the results.
The assumptions are validated if the performance measures col-
lected for the original and validation models are close to each other.

6.1. Transit time assumption

First, we consider an extended model in which the transit time
of ambulance patients is nonzero. Real transit time data was found
to be well captured by a beta distribution with parameters
(o =2.75,8=22.9) and a mean of 0.73 (Stat-Fit was used to conduct
the statistical fitting). In the queueing literature, the exponential
distribution is often used to model ambulance transit times or ser-
vice time (e.g., [22] and [12]). We also used an exponential distri-
bution with parameter p=1/0.73 as a second alternative for the
transit time distribution.

We define the utilization of ambulances in the EMS, uy4, as the
long-term percentage of time a random ambulance is being used.
For the zero transit time case, an ambulance is busy only when it
is experiencing offload delays. Mathematically, u4 = E[O]/N. For

Effects of nonzero transit time (Note: the 95% confidence interval half widths for simulation in parentheses).

System performance measure  Case study 1

Zero transit time

Beta (2.75, 22.9)

Exponential (0.73 hour)

k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3
E[qqx] 4.05 261 2.34 4,04(0.01) 2.61(0.01) 2.33(0.01)  4.04(0.01) 2.61(0.01) 2.33(0.01)
E[0®] 8.7 x 107 5.4 x10°° 13 x 1073 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
E[way] 129x10°% 125x10°% 32x10° 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
E[qu] 24.10 16.06 10.44 24.99(0.56) 16.01(0.24)  10.44(0.19) 25.23(0.61) 15.96(0.19)  10.51(0.24)
E[Wy] 14.17 11.47 13.06 14.70(0.33)  11.42(0.18) 13.05(0.24) 14.84(0.36) 11.40(0.14)  13.14(0.29)
P 1.35x10°° 8.88 x 1074 (0.43 x 107%) 8.10 x 1074 (0.41 x 107%)
U 0.02% 18.61% (0.03 x 1072) 18.27% (0.03)
Case study 2
E[qqx] 19.27 11.50 11.74 17.10(0.03)  10.72(0.03)  10.20(0.03)  17.17(0.02)  10.74(0.03)  (10.25(0.02)
E[0®] 1.68 0.16 1.58 0.59(0.01) 0.07(0.01) 0.66(0.01) 0.62(0.01) 0.07(0.00) 0.68(0.01)
E[way] 0.60 0.09 0.93 0.23(0.01) 0.05(0.01) 0.43(0.01) 0.22(0.01) 0.04(0.01) 0.42(0.02)
E[qw.] 18.12 7.46 15.34 5.25(0.07) 5.56(0.04) 5.08(0.12) 5.43(0.06) 5.63(0.05) 5.26(0.11)
E[Wy] 60.40 12.43 66.70 17.53(0.25)  9.26(0.07) 22.11(0.51)  18.08(0.23)  9.38(0.08) 22.87(0.47)
P, 6.93% 12.58% (0.03 x 1072) 12.40% (0.04 x 1072)
Uup 38.00% 65.22% (0.05 x 1072) 64.83% (0.05 x 1072)
Case study 3
E[qqx] 19.52 12.19 11.14 19.33(0.05)  12.14(0.05) 11.07(0.04) 19.33(0.06) 12.14(0.02) 11.07(0.04)
E[0%)] 0.64 0.02 0.23 0.52(0.01) 0.02(0.00) 0.20(0.01) 0.52(0.01) 0.02(0.01) 0.20(0.01)
E[Way] 0.20 0.01 0.13 0.17(0.01) 0.01(0.01) 0.11(0.02) 0.17(0.01) 0.01(0.01) 0.11(0.02)
E[qw] 20.85 7.10 5.98 26.98(0.25)  6.83(0.04) 5.89(0.08) 27.29(1.39)  6.82(0.05) 5.86(0.08)
E[Wy] 27.80 7.89 11.95 36.50(0.40)  7.71(0.03) 12.08(0.06) 36.93(0.47) 7.66(0.02) 12.11(0.06)
P, 9.01 x 107 4.8 x 1073 (0.00) 4.7 x 1073 (0.00)
U 5.56% 36.42% (0.08) 36.42% (0.02)
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Fig. 4. The fitted distribution for patient flow time.

the nonzero transit time case, an ambulance is busy if it is either
transferring a patient or experiencing offload delays. The EMS uti-
lization rates for the two non-zero transit time cases were col-
lected from the simulation output. The results are presented in
Table 7 for all three case studies. We have the following
observations:

e The results in Table 7 support the assumption that zero transit
time has negligible effect on the offload delays experienced by
ambulances for case studies 1 and 3, where the ambulance uti-
lization, ug, is small or moderate (i.e., 18% and 36%). This is con-
sistent with [4], who noted that the departure process of an M/
G/1 queue is Poisson, and thus if N is not small, the arrival pro-
cesses to the EDs are also Poisson, and is not affected by the
transit time.

When the ambulances are highly utilized as in case study 2 (i.e.,
65%), the probability of losing patients increases significantly
when the transit time becomes nonzero. The offload delays do
not change significantly, but the waiting times of walk-in
patients are changed dramatically. In fact, due to losing about
12% of the ambulance patients, walk-in patients get served
more quickly (i.e., E[w,y] is smaller).

Both the beta and exponential distributions give similar results
for the system performance measures.

For case study 1 (low offload delays case) the simulation does
not capture well the small possibility of offload delays at the
three EDs. The analytic method finds that, for example,
expected offload delays in the third ED are 3.2 x 1073 hours,
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which corresponds to 13.82 ambulance hours per month. The
simulation gives zero for the expected offload delays after 500
replications and 3.3 machine hours (on a ThinkPad W500
16 GB RAM computer). This demonstrates a limitation of the
simulation approach, which is the difficulty in capturing rare
events.

6.2. Service time assumption

The second assumption we validate is the exponential service
time for serving patients at the EDs. The data we have from one
of the regional hospitals is for the flow time of patients, so it in-
cludes patients’ delays and service time. To approximate the ser-
vice time distribution, we fitted flow time data using the Stat-Fit
package. The resulting distribution is Erlang of order 2 and is
shown in Fig. 4. We assume that the service time has a similar dis-
tribution to the flow time but with a different mean. Then the can-
didate for the service time distribution is the Erlang distribution.

Since the Erlang distribution does not have the memoryless
property, the preemptive repeat and the preemptive resume ser-
vice discipline give different results. We assume a preemptive re-
sume service discipline for walk-in patients in this section, which
is closer to the practice in the EDs. In Table 8, analytical and sim-
ulation results are reported for all three case studies of Section 5,
where the service time is Erlang with the same mean as the expo-
nential distribution. We have the following observations:

e The results in Table 8 support the assumption that the exponen-
tial service time has negligible effects on the the offload delays
experienced by ambulances for the three cases studies
considered.

e Due to the smaller coefficient of variation for the Erlang distri-
bution, expected queue lengths and consequently, expected
waiting times for both ambulance and walk-in patients are
slightly lower under the Erlang service time distribution (for
case studies 1 and 3 only). Thus, our assumption of exponen-
tially distributed service time leads to an upper bound on the
system performance measures.

e Another observation we have with respect to case study 2 is the
significant increase in walk-in patients’ expected sojourn time
and queue lengths at all EDs when the service time distribution

Table 8

Service time distribution effect (95% confidence interval half widths in parentheses).
Performance measure Exponential Erlang M =2

k=1 k=2 k=3 k=1 k=2 k=3

Case study 1
Elqa] 4.05 2.61 2.34 4.05(0.01) 2.61(0.01) 2.34(0.01)
E[0%)] 8.7x10°¢ 5.4 x 107 13 x 1073 0.00(0.00) 0.00(0.00) 0.00(0.00)
E[way] 129 x 10°° 1.25 x 10°° 32x10° 0.00(0.01) 0.00(0.01) 0.00(0.01)
E[qwy] 24.10 16.06 10.44 22.44(0.43) 14.78(0.24) 9.63(0.17)
E[Wyu] 14.17 11.47 13.06 13.20(0.24) 10.56(0.14) 12.03(0.21)
P, 135 x 107 1.00 x 1075(1.17 x 10°°)
Case study 2
E[qa, ] 19.27 11.50 11.74 19.5(0.03) 11.63(0.03) 11.83(0.02)
E[0%)] 1.68 0.16 1.58 1.69(0.01) 0.15(0.01) 1.54(0.01)
E[wq, «] 0.60 0.09 0.93 0.57(0.01) 0.08(0.01) 0.90(0.01)
Elqw, «] 18.12 7.46 15.34 27.76(1.65) 7.54(0.11) 21.15(0.93)
E[Wy, «] 60.40 12.43 66.70 86.39(2.34) 12.57(0.20) 92.00(3.98)
P 6.93 x 1072 5.77 x 1074(5.0 x 10%)
Case study 3
Elqq, k] 19.52 12.19 11.14 19.43(0.03) 12.20(0.02) 11.09(0.03)
E[0%)] 0.64 0.02 0.23 0.54(0.01) 0.02(0.00) 0.18(0.01)
E[wg, «] 0.20 0.01 0.13 0.17(0.01) 0.01(0.00) 0.10(0.01)
El[qw, «] 20.85 7.10 5.98 32.63(1.97) 6.94(0.05) 5.58(0.07)
E[Wy, «] 27.80 7.89 11.95 44.29(2.57) 7.74(0.04) 11.52(0.11)
P, 9.01 x 107 4.5 x10743.1 x1077)
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is Erlang. This is because under the Erlang distribution service
time, which has a smaller coefficient of variation, more high pri-
ority ambulance patients are accepted (P, decreased). As a
result, the low priority walk-in patients queue lengths and
waiting times increase significantly.

In summary, if the loss probability is small, performance mea-
sures for both types of patients are not affected significantly by
adding the transit time or by changing the service time distribu-
tion. In reality, ambulances usually operate at around u4 = 35% uti-
lization [20] (including transit time), which is similar to case study
3. For such a case, the loss probability is small. This indicates that
the queueing network introduced in this paper is robust as long as
the system of interest is working under normal operating condi-
tions. In other words, the analysis in this section indicates that
the assumptions made in Section 2 are appropriate as long as the
ambulance utilization is not too high, which is the actual condition
under which the EMS operates.
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Appendix A

To construct Q\', we first construct Q\", forn=0, 1,... ,N. Then,
recursively, we construct fo‘), for k=23, ... K. We stop the recur-
sion when Q' is obtained.

In the following construction, the variable k, 1 < k < K, implies
that hospitals 1, 2, ..., and k are involved, and the variable n,
0 <n <N, represents the number of available ambulances. For
k=1, we have, for n=0,

0/0
P
Q = . ) . ; (36)
i Gl —Cifly
and, forn > 1,
0 —DPi/0 Pi/o
1 M —l4 —P1%0  Pilo

1) B B
Q) = G Gl —CGly —P140 Pito

c+n-1 Cilly —Cilly —PiZo Prlo
G+n iy Gy

37

Note that, if n =0, there is no ambulance available. Thus, there
can be no arrival of patients in Q{". If n > 1, the total arrival rate
of patients is /o and the arrival rate to the first ED is p;4o. The ser-
vice rate is determined by min{c;,q:(t)}x;-

We also define the following matrices:

1 _ .
UO _(O)(c1+1)x(cl+1)7

I 0 38
U’(11) — ( (cr+m)x(c1+n) ) ,forn> 1. (38)
0 0 (c14+n+1)x(cy+n+1)
(1) I(C]+n)x(c1+n)
Vi = 0 , forn > 1. (39)
(c1+n+1)x(cq+n)

To indicate the size of a matrix, we have used subscripts. For exam-
ple, (0)c, 1)x(c,+1) IS @ square matrix of zeros of size ¢; + 1.

We define
0 (U
C k-
gl — n , forn > 0.
n o+ 1 yk-n ’
n-1
Ce+n iy
(40)
0 vy
Ek . yk=D
n
v = o+ 1 VD ,forn>1.
c+n-1 ng4>
Ck+n k-1
k Ué; )
(41)
For 2 <k <K, we have, forn > 0and 0 <i<n+c,
k) _ Ak-1)
An(i,i) - Qn—max(O,i—ck) mln(l Ck):ukl pk/'LOUn maxOl )" (42)

If i} = i, the number of ambulances available to hospitals 1, 2, ..., and
k — 1 is max{0, i — cx}. Thus, the transitions of (qr_1(t), ... ,q1(t)) are

described by Q" The transitions of g(t) are determined by

n—max{0,i—cy}*
min{i,c; }tul for decreasing its value by one, and by pkAOU
for increasing its value by one.

P - PiioUy Y,
nii+1) — pkﬂoV”"”
VY n—(i—

n— max(Ol Ck}

for 0
for ¢

i<c-—1;

(43)

<1<
<i<n+¢ -1

k)’

Note that, for levelsiand i+ 1, if i >
of states. The reason is that if i >
ambulance available for hospitals 1, 2, ...,

Ck, they have different number
i, for level i + 1, there is one less
and k — 1.

min(i, c) 1, for 1 <i< ¢y
A(k)

¥ = !
n(ii—1) mln( )Mk( n+1 (i Ck)) s for G+1<igsn+ Ck.

(44)
where (V“"],)(i,ck))/ is the transpose of (V" Vi Ck)).

n+1 n+1-
Then Q| is constructed from A, A%, | and AY, | by letting

Al — Aff‘&j), Al — AR in Eq. (2),

(i) (i,i+1)

n(ii+1)?

andA” N =AW

n(i,i+1)’ n(ii-1)

Algorithm 4. Computing matrix blocks in Q,(\f)

1. Based on Egs. (37)-(39), compute matrices {Q.", for
o<ng N}, {Ufﬁ, foro<n< N}, and {Vf.l”, for1<ng N}.

Set k=2.
2. If k <K, go to step 3; Otherwise, Stop.

3. Based on Eqgs. (42)-(44), compute {A(k foro<n
0<i n+ck} {A’”H) for 0<n<N and 0

Ckf‘l} {An” 1y for 0<n

(=%

<Nan
<i<n+
<N and 1<
n<Np{

N}. Set k=:k+1, Go to step 2.

<n+ ck} Then

compute {Q ® for 0 < U®, for 0<n< N} and

{Vn,forl\n<
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Denote by ¢k the number of states of the Markov chain {(qqx
(£)Gax_1(t), ... ,qqa1(t)),t = 0}. Let &(.) be the indicator function.
Then &, which is also the size of the matrix Q{’, can be obtained
as

> IS (G + 1) 0, (45)
(No.N1,..Ni): Z}’;ONJ-:NNJ‘ >0,0<j<K
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